Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
2.
Biol. Res ; 53: 44, 2020. graf
Article in English | LILACS | ID: biblio-1131888

ABSTRACT

BACKGROUND: Atherosclerosis (AS) is the main pathological basis of coronary heart disease, cerebral infarction and peripheral vascular disease, which seriously endanger people's life and health. In recent years, long non-coding RNA (lncRNA) has been found to be involved in gene expression regulation, but the research on AS is still in the initial stage. In this study, we mainly studied the role of HCG11 in patients with AS. Quantitative Real-time Polymerase Chain Reaction (QRT-PCR) was used to detect the expression of HCG11 and miR-144 in the serum of AS patients and healthy volunteers. Oxidation Low Lipoprotein (Ox-LDL), interleukin-6 (IL-6) and tumor necrosis factor α (TNF α) radiation were used to establish human vascular smooth muscle cells (VSMCs) in vitro model. Cell proliferation was determined by Cell Counting Kit-8 (CCK-8) assay. The apoptosis rate was determined by flow cytometry (FACS) and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay (TUNEL) staining. The expression levels of Forkhead box protein F1 (FOXF1), B cell lymphoma-2 (Bcl-2) and BCL2-Associated X (Bax) were detected by qRT-PCR. Luciferase gene reporter and RNA pull down experiments confirmed the relationship between HCG11 and miR-144, miR-144 and FOXF1. RESULTS: This study showed that HCG11 was significantly upregulated in patients with AS, while miR-144 was down-regulated in patients with AS. Ox-LDL and IL-6 in VSMCs induced up-regulation of HCG11 and down-regulation of miR-144. Overexpression of HCG11 promoted the proliferation and inhibited apoptosis of VSMCs. Luciferase gene reporter gene assay showed that HCG11 could bind to miR-144, and miR-144 could bind to FOXF1. Overexpression of miR-144 reversed the effect of HCG11 on VSMCs. CONCLUSIONS: LncRNA HCG11 regulates proliferation and apoptosis of vascular smooth muscle cell through targeting miR-144-3p/FOXF1 axis.


Subject(s)
Humans , Myocytes, Smooth Muscle/cytology , MicroRNAs/genetics , Atherosclerosis/genetics , Forkhead Transcription Factors/genetics , RNA, Long Noncoding/genetics , Apoptosis/genetics , Cell Proliferation/genetics , Muscle, Smooth, Vascular/cytology
3.
Braz. j. med. biol. res ; 52(8): e8318, 2019. tab, graf
Article in English | LILACS | ID: biblio-1011603

ABSTRACT

Currently, there is great clinical need for suitable synthetic grafts that can be used in vascular diseases. Synthetic grafts have been successfully used in medium and large arteries, however, their use in small diameter vessels is limited and presents a high failure rate. In this context, the aim of this study was to develop tissue engineering scaffolds, using poly(trimethylene carbonate-co-L-lactide) (PTMCLLA), for application as small diameter vascular grafts. For this, copolymers with varying trimethylene carbonate/lactide ratios - 20/80, 30/70, and 40/60 - were submitted to electrospinning and the resulting scaffolds were evaluated in terms of their physicochemical and biological properties. The scaffolds produced with PTMCLLA 20/80, 30/70, and 40/60 showed smooth fibers with an average diameter of 771±273, 606±242, and 697±232 nm, respectively. When the degradation ratio was evaluated, the three scaffold groups had a similar molecular weight (Mw) on the final day of analysis. PTMCLLA 30/70 and 40/60 scaffolds exhibited greater flexibility than the PTMCLLA 20/80. However, the PTMCLLA 40/60 scaffolds showed a large wrinkling and their biological properties were not evaluated. The PTMCLLA 30/70 scaffolds supported the adhesion and growth of mesenchymal stem cells (MSCs), endothelial progenitor cells, and smooth muscle cells (SMCs). In addition, they provided a spreading of MSCs and SMCs. Given the results, the electrospun scaffolds produced with PTMCLLA 30/70 copolymer can be considered promising candidates for future applications in vascular tissue engineering.


Subject(s)
Humans , Polyesters/chemistry , Blood Vessel Prosthesis , Dioxanes/chemistry , Tissue Scaffolds/chemistry , Materials Testing , Cells, Cultured/cytology , Myocytes, Smooth Muscle/cytology , Cell Proliferation , Mesenchymal Stem Cells/cytology , Endothelial Progenitor Cells/cytology
4.
Acta cir. bras ; 32(5): 350-358, May 2017. tab, graf
Article in English | LILACS | ID: biblio-837705

ABSTRACT

Abstract Purpose: To investigate the mechanisms by which PD98059 and LY294002 interfere with the abnormal deposition of extracellular matrix regulated by connective tissue growth factor (CTGF) of rat pulmonary artery smooth muscle cells (PASMCs). Methods: Rat PASMCs were cultured and separated into a control group. Real-time fluorescence quantitative PCR was performed to detect the expression of collagen III and fibronectin mRNA. Immunohistochemistry and western blot analyses were performed to detect the expression of collagen III protein. Results: The expression of collagen III and fibronectin mRNA was greater in PASMCs stimulated with CTGF for 48 h, than in the control group. After 72h of stimulation, the expression of collagen III protein in the PASMCs was greater than in the control. The equivalent gene and protein expression of the CPL group were much more significant. Conclusions: CTGF can stimulate the gene expression of collagen III and fibronectin in PASMCs, which may be one of the factors that promote pulmonary vascular remodeling (PVR) under the conditions of pulmonary arterial hypertension (PAH). PD98059 and LY294002 can inhibit the ERK1/2 and PI3K/PKB signaling pathways, respectively, thus interfering with the biological effects of CTGF. This may be a new way to reduce PAH-PVR.


Subject(s)
Animals , Male , Flavonoids/pharmacology , Chromones/pharmacology , Fibronectins/metabolism , MAP Kinase Signaling System/drug effects , Collagen Type III/metabolism , Connective Tissue Growth Factor/pharmacology , Pulmonary Artery/cytology , Gene Expression/drug effects , Cells, Cultured , Gene Expression Regulation , Fibronectins/genetics , Rats, Sprague-Dawley , Phosphatidylinositol 3-Kinases/metabolism , Models, Animal , Collagen Type III/genetics , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Connective Tissue Growth Factor/metabolism
5.
Experimental & Molecular Medicine ; : e168-2015.
Article in English | WPRIM | ID: wpr-30206

ABSTRACT

Elevated plasma concentration of native low-density lipoprotein (nLDL) is associated with vascular smooth muscle cell (VSMC) activation and cardiovascular disease. We investigated the mechanisms of superoxide generation and its contribution to pathophysiological cell proliferation in response to nLDL stimulation. Lucigenin-induced chemiluminescence was used to measure nLDL-induced superoxide production in human aortic smooth muscle cells (hAoSMCs). Superoxide production was increased by nicotinamide adenine dinucleotide phosphate (NADPH) and decreased by NADPH oxidase inhibitors in nLDL-stimulated hAoSMC and hAoSMC homogenates, as well as in prepared membrane fractions. Extracellular signal-regulated kinase 1/2 (Erk1/2), protein kinase C-theta (PKCtheta) and protein kinase C-beta (PKCbeta) were phosphorylated and maximally activated within 3 min of nLDL stimulation. Phosphorylated Erk1/2 mitogen-activated protein kinase, PKCtheta and PKCbeta stimulated interactions between p47phox and p22phox; these interactions were prevented by MEK and PKC inhibitors (PD98059 and calphostin C, respectively). These inhibitors decreased nLDL-dependent superoxide production and blocked translocation of p47phox to the membrane, as shown by epifluorescence imaging and cellular fractionation experiments. Proliferation assays showed that a small interfering RNA against p47phox, as well as superoxide scavenger and NADPH oxidase inhibitors, blocked nLDL-induced hAoSMC proliferation. The nLDL stimulation in deendothelialized aortic rings from C57BL/6J mice increased dihydroethidine fluorescence and induced p47phox translocation that was blocked by PD98059 or calphostin C. Isolated aortic SMCs from p47phox-/- mice (mAoSMCs) did not respond to nLDL stimulation. Furthermore, NADPH oxidase 1 (Nox1) was responsible for superoxide generation and cell proliferation in nLDL-stimulated hAoSMCs. These data demonstrated that NADPH oxidase activation contributed to cell proliferation in nLDL-stimulated hAoSMCs.


Subject(s)
Animals , Humans , Aorta/cytology , Cell Line , Cell Proliferation , Cells, Cultured , Lipoproteins, LDL/metabolism , Mice, Inbred C57BL , Mitogen-Activated Protein Kinases/metabolism , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/cytology , NADPH Oxidases/metabolism , Phosphorylation , Protein Kinase C/metabolism , Signal Transduction , Superoxides/metabolism
6.
Experimental & Molecular Medicine ; : e180-2015.
Article in English | WPRIM | ID: wpr-186437

ABSTRACT

Leptin is a peptide hormone, which has a central role in the regulation of body weight; it also exerts many potentially atherogenic effects. Ferulic acid ethyl ester (FAEE) has been approved for antioxidant properties. The aim of this study was to investigate whether FAEE can inhibit the atherogenic effects of leptin and the possible molecular mechanism of its action. Both of cell proliferation and migration were measured when the aortic smooth muscle cell (A10 cell) treated with leptin and/or FAEE. Phosphorylated p44/42MAPK, cell cycle-regulatory protein (for example, cyclin D1, p21, p27), beta-catenin and matrix metalloproteinase-9 (MMP-9) proteins levels were also measured. Results demonstrated that leptin (10, 100 ng ml-1) significantly increased the proliferation of cells and the phosphorylation of p44/42MAPK in A10 cells. The proliferative effect of leptin was significantly reduced by the pretreatment of U0126 (0.5 muM), a MEK inhibitor, in A10 cells. Meanwhile, leptin significantly increased the protein expression of cyclin D1, p21, beta-catenin and decreased the expression of p27 in A10 cells. In addition, leptin (10 ng ml-1) significantly increased the migration of A10 cells and the expression of MMP-9 protein. Above effects of leptin were significantly reduced by the pretreatment of FAEE (1 and 10 muM) in A10 cells. In conclusion, FAEE exerts multiple effects on leptin-induced cell proliferation and migration, including the inhibition of p44/42MAPK phosphorylation, cell cycle-regulatory proteins and MMP-9, thereby suggesting that FAEE may be a possible therapeutic approach to the inhibition of obese vascular disease.


Subject(s)
Animals , Rats , Antioxidants/pharmacology , Aorta/cytology , Caffeic Acids/pharmacology , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Leptin/metabolism , Matrix Metalloproteinase 9/metabolism , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/cytology , beta Catenin/metabolism
7.
Indian J Biochem Biophys ; 2013 Oct; 50(5): 419-427
Article in English | IMSEAR | ID: sea-150251

ABSTRACT

There is growing evidence that ouabain, a cardiotonic steroid may promote growth of cardiac and vascular myocytes, indicating its novel role in cell growth and proliferation, without appreciable inhibition of the sodium pump. The mechanism(s) by which low dose of ouabain produces pulmonary artery smooth muscle cell proliferation, a prerequisite for right ventricular hypertrophy, is currently unknown. Here, we analyzed the effects of low dose of ouabain (10 nM) on increase in [Ca2+]i, m-calpain and protein kinase C (PKC) activities on pulmonary artery smooth muscle cell proliferation and determined their sequential involvement in this scenario. We treated bovine pulmonary artery smooth muscle cells with a low dose of ouabain (10 nM) and determined [Ca2+]i in the cells by fluorometric assay using fura2-AM, m-calpain activity by fluorometric assay using SLLVY-AMC as the substrate, PKC activity using an assay kit and assay of Na+/K+ATPase activity spectrophotometrically. We purified m-calpain and PKCα by standard chromatographic procedure by HPLC and then studied cleavage of the purified PKCα by m-calpain using Western immunoblot method. Subsequently, we performed cell proliferation assay utilizing the redox dye resazunin. We used selective inhibitors of [Ca2+]i (BAPTA-AM), m-calpain (MDL28170), PKCα (Go6976) and determined their involvement in ouabain (10 nM)-mediated smooth muscle cell proliferation. Our results suggested that treatment of bovine pulmonary artery smooth muscle cells with a low dose of ouabain (10 nM) increased [Ca2+]i and subsequently stimulated m-calpain activity and proteolytically activated PKCα in caveolae (signaling microdomain also known as signalosomes) of the cells. Upon activation, PKCα increased the smooth muscle cell proliferation via Go/G1 to S/G2-M phase transition. Thus, [Ca2+]i-mCalpain-PKCα signaling axis plays a crucial role during low dose of ouabain-mediated pulmonary artery smooth muscle cell proliferation.


Subject(s)
Amino Acid Sequence , Animals , Calpain/metabolism , Cattle , Caveolae/drug effects , Caveolae/metabolism , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Molecular Sequence Data , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Ouabain/pharmacology , Protein Kinase C-alpha/chemistry , Protein Kinase C-alpha/metabolism , Proteolysis/drug effects , Pulmonary Artery/cytology , Sodium-Potassium-Exchanging ATPase/metabolism
8.
Experimental & Molecular Medicine ; : 159-166, 2012.
Article in English | WPRIM | ID: wpr-93414

ABSTRACT

Sphingosylphosphorylcholine (SPC) induces differentiation of human adipose tissue-derived mesenchymal stem cells (hASCs) into smooth muscle-like cells expressing alpha-smooth muscle actin (alpha-SMA) via transforming growth factor-beta1/Smad2- and RhoA/Rho kinase-dependent mechanisms. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins) have been known to have beneficial effects in the treatment of cardiovascular diseases. In the present study, we examined the effects of simvastatin on the SPC-induced alpha-SMA expression and Smad2 phosphorylation in hASCs. Simvastatin inhibited the SPC-induced alpha-SMA expression and sustained phosphorylation of Smad2 in hASCs. SPC treatment caused RhoA activation via a simvastatin-sensitive mechanism. The SPC-induced alpha-SMA expression and Smad2 phosphorylation were abrogated by pretreatment of the cells with the Rho kinase inhibitor Y27632 or overexpression of a dominant negative RhoA mutant. Furthermore, SPC induced secretion of TGF-beta1 and pretreatment with either Y27632 or simvastatin inhibited the SPC-induced TGF-beta1 secretion. These results suggest that simvastatin inhibits SPC-induced differentiation of hASCs into smooth muscle cells by attenuating the RhoA/Rho kinase-dependent activation of autocrine TGF-beta1/Smad2 signaling pathway.


Subject(s)
Humans , Amides/pharmacology , Blotting, Western , Cell Differentiation/drug effects , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Immunohistochemistry , Mesenchymal Stem Cells/cytology , Myocytes, Smooth Muscle/cytology , Phosphorylcholine/analogs & derivatives , Pyridines/pharmacology , Simvastatin/pharmacology , Sphingosine/analogs & derivatives , rhoA GTP-Binding Protein/antagonists & inhibitors
9.
Experimental & Molecular Medicine ; : 303-309, 2012.
Article in English | WPRIM | ID: wpr-186639

ABSTRACT

We previously reported the successful establishment of embryonic stem cell (ESC)-like multipotent spermatogonial stem cells (mSSCs) from neonatal mouse testis. Here, we examined the ability of mSSCs to differentiate into vascular endothelial cells and smooth muscle cells, and compared to that of mouse ESCs. We used real-time reverse transcriptase polymerase chain reaction and immunohistochemistry to examine gene expression profiles of mSSCs and ESCs during in vitro vascular differentiation. Both mSSCs and ESCs exhibited substantial increase in the expression of mesodermal markers, such as Brachyury, Flk1, Mesp1, Nkx2.5, and Islet1, and a decrease in the expression of pluripotency markers, such as Oct3/4 and Nanog during the early stage of differentiation. The mRNA levels of vascular endothelial (VE)-cadherin and CD31 gradually increased in both differentiated mSSCs and ESCs. VE-cadherin- or CD31-positive cells formed sprouting branch-like structures, as observed during embryonic vascular development. At the same time, vascular smooth muscle cell-specific markers, such as myocardin and alpha-smooth muscle actin (SMA), were also highly expressed in differentiated mSSCs and ESCs. Immunocytochemical analysis revealed that the differentiated cells expressed both alpha-SMA and SM22-alpha proteins, and exhibited the intracellular fibril structure typical of smooth muscle cells. Overall, our findings showed that mSSCs have similar vascular differentiation abilities to those of ESCs, suggesting that mSSCs may be an alternative source of autologous pluripotent stem cells for vascular regeneration.


Subject(s)
Animals , Humans , Male , Mice , Animals, Newborn , Biomarkers/metabolism , Cell Differentiation/physiology , Embryonic Stem Cells/cytology , Endothelial Cells/cytology , Gene Expression , Gene Expression Profiling , Immunohistochemistry , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/cytology , Pluripotent Stem Cells/cytology , Real-Time Polymerase Chain Reaction , Spermatogonia/cytology , Testis/cytology
10.
Experimental & Molecular Medicine ; : 684-692, 2011.
Article in English | WPRIM | ID: wpr-190966

ABSTRACT

Recent epidemiologic studies clearly showed that early intensive glucose control has a legacy effect for preventing diabetic macrovascular complications. However, the cellular and molecular processes by which high glucose leads to macrovascular complications are poorly understood. Vascular smooth muscle cell (VSMC) dysfunction due to high glucose is a characteristic of diabetic vascular complications. Activation of nuclear factor-kappaB (NF-kappaB) may play a key role in the regulation of inflammation and proliferation of VSMCs. We examined whether VSMC proliferation and plasminogen activator inhibitor-1 (PAI-1) expression induced by high glucose were mediated by NF-kappaB activation. Also, we determined whether selective inhibition of NF-kappaB would inhibit proliferation and PAI-1 expression in VSMCs. VSMCs of the aorta of male SD rats were treated with various concentrations of glucose (5.6, 11.1, 16.7, and 22.2 mM) with or without an inhibitor of NF-kappaB or expression of a recombinant adenovirus vector encoding an IkappaB-alpha mutant (Ad-IkappaBalphaM). VSMC proliferation was examined using an MTT assay. PAI-1 expression was assayed by real-time PCR and PAI-1 protein in the media was measured by ELISA. NF-kappaB activation was determined by immunohistochemical staining, NF-kappaB reporter assay, and immunoblotting. We found that glucose stimulated VSMC proliferation and PAI-1 expression in a dose-dependent manner up to 22.2 mM. High glucose (22.2 mM) alone induced an increase in NF-kappaB activity. Treatment with inhibitors of NF-kappaB such as MG132, PDTC or expression of Ad-IkappaB-alphaM in VSMCs prevented VSMC proliferation and PAI-1 expression induced by high glucose. In conclusion, inhibition of NF-kappaB activity prevented high glucose-induced VSMC proliferation and PAI-1 expression.


Subject(s)
Animals , Male , Rats , Aorta/cytology , Cardiovascular Diseases/prevention & control , Cell Proliferation/drug effects , Cells, Cultured , Diabetes Complications/prevention & control , Gene Expression Regulation/drug effects , Glucose/immunology , Leupeptins/pharmacology , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/cytology , NF-kappa B/antagonists & inhibitors , Plasminogen Activator Inhibitor 1/genetics , Proline/analogs & derivatives , Rats, Sprague-Dawley , Thiocarbamates/pharmacology
11.
Yonsei Medical Journal ; : 413-419, 2011.
Article in English | WPRIM | ID: wpr-95679

ABSTRACT

PURPOSE: Stimulation of human aortic smooth muscle cells (hAoSMCs) with native low-density lipoprotein (nLDL) induced the production of interleukin-8 (IL-8) that is involved in the pathogenesis of cardiovascular diseases. However, the process of signal transduction of nLDL was currently uncharacterized. Therefore, the aim of this study was to investigate the signal transduction pathway of nLDL-dependent IL-8 production and the effect of IL-8 on hAoSMCs migration. MATERIALS AND METHODS: nLDL was prepared by ultracentrifugation with density-adjusted human serum of normocholesterolemia. In hAoSMCs, IL-8 secreted to medium was measured using ELISA assay, and Western blot analysis was performed to detect p38 MAPK activation as a key regulator of IL-8 production. nLDL-dependent H2O2 generation was determined by microscopic analysis using 2',7'-dichlorofluoroscein diacetate (DCF-DA). IL-8-induced migration of hAoSMCs was evaluated by counting the cell numbers moved to lower chamber using Transwell plates. RESULTS: nLDL-induced IL-8 production was completely blocked by preincubation of hAoSMCs with pertussis toxin (PTX), which inhibited nLDL-dependent p38 MAPK phosphorylation. PTX-sensitive G-protein coupled receptor was responsible for nLDL-dependent H2O2 generation that was abrogated with preincubation of the cells with of polyethylene glycol-conjugated catalase (PEG-Cat). Pretreatment of PEG-Cat prevented nLDL-induced p38 MAPK phosphorylation and IL-8 production, which was partly mimicked by treatment with exogenous H2O2. Finally, IL-8 increased hAoSMCs migration that was completely blocked by incubation with IL-8 neutralizing antibody. CONCLUSION: PTX-sensitive G-protein coupled receptor-dependent H2O2 generation by nLDL plays a critical role in IL-8 production in hAoSMC, and IL-8 may contribute to atherogenesis through increased migration of hAoSMCs.


Subject(s)
Humans , Cell Movement/physiology , Cells, Cultured , Hydrogen Peroxide/metabolism , Interleukin-8/biosynthesis , Lipoproteins, LDL/pharmacology , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/cytology , Pertussis Toxin/pharmacology , Phosphorylation/drug effects , Reactive Oxygen Species/metabolism , Receptors, G-Protein-Coupled/physiology , Signal Transduction , p38 Mitogen-Activated Protein Kinases/metabolism
12.
Experimental & Molecular Medicine ; : 387-396, 2009.
Article in English | WPRIM | ID: wpr-196698

ABSTRACT

Angiotensin II (Ang II) stimulates migration of vascular smooth muscle cell (VSMC) in addition to its contribution to contraction and hypertrophy. It is well established that Rho GTPases regulate cellular contractility and migration by reorganizing the actin cytoskeleton. Ang II activates Rac1 GTPase, but its upstream guanine nucleotide exchange factor (GEF) remains elusive. Here, we show that Ang II-induced VSMC migration occurs in a betaPIX GEF-dependent manner. betaPIX-specific siRNA treatment significantly inhibited Ang II-induced VSMC migration. Ang II activated the catalytic activity of betaPIX towards Rac1 in dose- and time-dependent manners. Activity reached a peak at 10 min and declined close to a basal level by 30 min following stimulation. Pharmacological inhibition with specific kinase inhibitors revealed the participation of protein kinase C, Src family kinase, and phosphatidylinositol 3-kinase (PI3-K) upstream of betaPIX. Both p21-activated kinase and reactive oxygen species played key roles in cytoskeletal reorganization downstream of betaPIX-Rac1. Taken together, our results suggest that betaPIX is involved in Ang II-induced VSMC migration.


Subject(s)
Animals , Rats , Phosphatidylinositol 3-Kinase/metabolism , Angiotensin II/metabolism , Cell Movement , Cells, Cultured , Guanine Nucleotide Exchange Factors/genetics , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/cytology , NADPH Oxidases/metabolism , Protein Kinase C/metabolism , RNA, Small Interfering/genetics , Rats, Sprague-Dawley , p21-Activated Kinases/metabolism , rac1 GTP-Binding Protein/metabolism , src-Family Kinases/metabolism
13.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 27-32, 2008.
Article in English | WPRIM | ID: wpr-634576

ABSTRACT

In order to investigate the effects of puerarin on pulmonary vascular remodeling and protein kinase C-alpha (PKC-alpha) in chronic exposure smoke rats, 54 male Wistar rats were randomly divided into 7 groups: control group (C group), smoke exposure groups (S(4w) group, S(8w) group), puerarin groups (P(4w) group, P(8w) group), propylene glycol control groups (PC(4w) group, PC(8w) group). Rats were exposed to cigarette smoke or air for 4 to 8 weeks. Rats in puerarin groups also received puerarin. To evaluate vascular remodeling, alpha-smooth muscle actin (alpha-SM-actin) staining was used to count the percentage of completely muscularised vessels to intraacinar pulmonary arteries (CMA/IAPA) which was determined by morphometric analysis of histological sections. Pulmonary artery smooth muscle cell (PASMC) apoptosis was detected by in situ end labeling technique (TUNEL), and proliferation by proliferating cell nuclear antigen (PCNA) staining. Reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence staining and Western blot analysis were done to detect the PKC-alpha mRNA and protein expression in pulmonary arteries. The results showed that in cigarette smoke-exposed rats the percentage of CMA/IAPA and alpha-SM-actin expression were increased greatly, PASMC apoptosis was increased and proliferation was markedly increased; Apoptosis indices (AI) and proliferation indices (PI) were higher than in C group; AI and PI were correlated with vascular remodeling indices; The expression of PKC-alpha mRNA and protein in pulmonary arteries was significantly higher than in C group. In rats treated with puerarin, the percentage of CMA/IAPA and cell proliferation was reduced, whereas PASMC apoptosis was increased; The expression levels of PKC-alpha mRNA and protein were lower than in smoke exposure rats. There was no difference among all these data between S groups and PC groups. These findings suggested that cigarette smoke-induced pulmonary vascular remodeling was most likely an effect of the imbalance of PASMC proliferation and apoptosis. Puerarin appears to be able to reduce cell proliferation and vascular remodeling possibly through PKC signaling transduction pathway.


Subject(s)
Apoptosis , Cell Proliferation , Endothelium, Vascular/drug effects , Isoflavones/pharmacology , Lung/drug effects , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/drug effects , Protein Kinase C-alpha/metabolism , Pulmonary Artery/cytology , Pulmonary Artery/drug effects , Rats, Wistar , Smoking , Tobacco Smoke Pollution , Vasodilator Agents/pharmacology
14.
Yonsei Medical Journal ; : 804-810, 2008.
Article in English | WPRIM | ID: wpr-153696

ABSTRACT

PURPOSE: Obesity is a major risk factor for asthma and it influences airway smooth muscle function and responsiveness. Adiponectin is inversely associated with obesity and its action is mediated through at least 2 cell membrane receptors (AdipoR1 and AdipoR2). Leptin is positively associated with obesity. We investigated whether human airway smooth muscle (ASM) cells express adiponectin receptors and whether adiponectin and leptin regulate human ASM cell proliferation and vascular endothelial growth factor (VEGF) release. MATERIALS AND METHODS: Human ASM cells were growth-arrested in serum-deprived medium for 48 hours and then stimulated with PDGF, adiponectin and leptin. After 48 hours of stimulation, proliferation was determined using a cell proliferation ELISA kit. Human AdipoR1 and -R2 mRNA expressions were determined by RT-PCR using human-specific AdipoR1 and -R2 primers. Concentrations of VEGF, monocyte chemotactic protein (MCP)-1 and macrophage inflammatory protein (MIP)-1alpha in cell culture supernatant were determined by ELISA. RESULTS: Both AdipoR1 and AdipoR2 mRNA were expressed in the cultured human ASM cells. However, adiponectin did not suppress PDGF-enhanced ASM cell proliferation, nor did leptin promote ASM cell proliferation. Leptin promoted VEGF release by human ASM cells, while adiponectin did not influence VEGF release. Neither leptin nor adiponectin influenced MCP-1 secretion from human ASM cells. Adiponectin and MIP-1alpha were not secreted by human ASM cells. CONCLUSION: Human ASM cells expressed adiponectin receptors. However, adiponectin did not regulate human ASM cell proliferation or VEGF release, while leptin stimulated VEGF release by human ASM cells.


Subject(s)
Humans , Adiponectin/metabolism , Cell Proliferation/drug effects , Cells, Cultured , Chemokine CCL2/metabolism , Chemokine CCL3/metabolism , Leptin/metabolism , Myocytes, Smooth Muscle/cytology , Obesity/metabolism , Platelet-Derived Growth Factor/metabolism , Receptors, Adiponectin/metabolism , Respiratory System/cytology , Vascular Endothelial Growth Factor A/metabolism
15.
Article in English | IMSEAR | ID: sea-20156

ABSTRACT

BACKGROUND & OBJECTIVE: Despite the established pro-inflammatory actions of platelet activating factor (PAF) observed on chronic obstructive pulmonary disease (COPD), its action on airway remodeling has been still unclear. It has been reported that nuclear factor-kappa B (NF-kappaB) activity is necessary for ASMC proliferation. Further, PAF has been identified as the proximal inducer of NF-kappaB. The present study was thus aimed to investigate the effect of PAF on airway smooth muscle cells (ASMC) proliferation and to evaluate the potential role of NF-kappaB in this regulation. METHODS: Healthy male Sprague-Dowley rats of 6-8 wk age were used for obtaining ASMCs. 3-(4,5- dimethylthiazole-2-yl)-2,5-diphenyltetrazolium-bromide (MTT) assay was to investigate the effects of PAF on ASMC proliferation and to confirm its optimum concentration for action. Additionally, cell proliferation was also examined using cell cycle assay by flow cytometry and immunocytochemical staining for proliferating cell nuclear antigen (PCNA). And NF-kappaB DNA-binding activity was assayed by electrophoretic mobility shift assay (EMSA). RESULTS: PAF stimulated ASMC proliferation with its peak at 100 nM. At this optimum concentration, PAF significantly increased the cell proliferation index (PI) and the PCNA-positive rate in the ASMCs, as well as NF-kappaB DNA- binding activity. Whereas, 20 mM N-acetylcysteine (NAC) pre-treatment effectively blocked all of these events. INTERPRETATION & CONCLUSION: The present findings demonstrated that PAF could promote ASMC proliferation, suggesting its potential involvement in airway remodeling. Our study also suggested the promising action of 20 mM NAC on the alleviation of airway remodeling due to direct inhibition of ASMC proliferation. The involved mechanism would be relevant to the change of NF-kappaB activation in ASMCs.


Subject(s)
Animals , Cell Proliferation/drug effects , Cells, Cultured , Male , Myocytes, Smooth Muscle/cytology , NF-kappa B/physiology , Platelet Activating Factor/pharmacology , Rats , Rats, Sprague-Dawley , Respiratory System/cytology
16.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 269-73, 2005.
Article in English | WPRIM | ID: wpr-634267

ABSTRACT

To investigate the effect of cigarette smoke extract (CSE) on the role of protein kinase C (PKC) in the proliferation of passively sensitized human airway smooth muscle cells (HASMCs). After synchronization of cultured HASMCs, they were divided into a group A and Group B. The group A was treated with normal human serum and served as controls and the group B was treated with the serum of asthma patients. The group A was further divided into group of A1, A2 and A3 and the group B was sub-divided into the group of B1, B2, B3, B4 and B5. No other agents were added to the group A1 and B1. The cells of group A2 and B2 were stimulated with 5% CSE for 24 h. HASMCs from group A3 and B3 were treated with PKC agonist PMA (10 nmol/L) and CSE (5%) for 24 h. PKC inhibitor Ro-31-8220 (5 micromol/L) was added to the HASMCs of group B4 for 24 h. The cells from group B5 were stimulated with Ro-31-8220 (5 micromol/L) and CSE (5 %) for 24 h. The proliferation of HASMCs isolated from group A and B was examined by cell cycle analysis, MTT colorimetric assay and 3H-TdR incorporation test. The expression of PKC-a in each group was observed by Western blotting and RT-PCR, respectively. The results showed that the percentage of S phase, absorbance (A) value, the rate of 3H-TdR incorporation, the ratios of A value of PKC-alpha mRNA and the A value of PKC-alpha protein in HASMCs from group B1, B2 and B3 were significantly increased compared to those of group A1, A2 and A3 correspondingly and respectively (P< 0.01). The proliferation of HASMCs of group A2 and B2 stimulated with CSE and group A3 and B3 stimulated with CSE and PMA were also significantly enhanced when group A1, A2 and A3 and group B1, B2 and B3 compared to each other (P<0.05, P<0.01, respectively). The percentage of S phase, absorbency (A) value, 3H-TdR incorporation rate, the ratios of A value of PKC-alpha mRNA and the A value of PKC-alpha protein in HASMCs from group B4 treated with Ro-31-8220 and group B5 treated with CSE and Ro-31-8220 were significantly decreased as compared to those of group B1 and B2 correspondingly and respectively (P<0.05, P<0.01). It was concluded that CSE can enhance the passively sensitized HASMC proliferation and the expression of PKC alpha. PKC and its alpha subtype may contribute to this process. Our results suggest cigarette may play an important role in ASMCs proliferation of asthma through PKC signal pathway.


Subject(s)
Asthma/blood , Bronchi/cytology , Bronchi/metabolism , Cell Cycle/drug effects , Cell Proliferation , Cells, Cultured , Culture Media , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/enzymology , Protein Kinase C/biosynthesis , Protein Kinase C/physiology , Serum , Signal Transduction , Tobacco/adverse effects , Tobacco Smoke Pollution/adverse effects
17.
Experimental & Molecular Medicine ; : 18-26, 2005.
Article in English | WPRIM | ID: wpr-18135

ABSTRACT

NF-kappa B promotes cell survival against external stress such as radiation. We examined whether NF-kappa B decoy transfection enhances the antiproliferative effects of radiation on vascular smooth muscle cells (VSMCs) in vitro. The irradiation induced activation or nuclear translocation of NF-kappa B p65 in VSMCs was confirmed by immunofluorescence. NF-kB decoy transfection resulted in inhibition of the radiation-induced NF-kB activation in VSMCs and the subsequent reduction of transcription and translocation of ICAM, iNOS, and TNF-alpha, downstream molecules under the control of NF-kappa B. By using MTT assay, NF-kappa B decoy augmented the antiproliferative effects of radiation, where the effect of low dose radiation (2 and 8-Gy) of the cells transfected with NF-kappa B decoy was equivalent to the high dose (16-Gy) irradiated non-transfected cells at 48 h after irradiation: 1.06+/-0.16, 1.11+/-0.22, 1.20+/-0.25, respectively. The decrease in proliferation and survival of the radiation treated cells by flow cytometry analysis showed that NF-kappa B inhibition did not show any additive effects on the cell cycle of the irradiated VSMCs, while apoptosis was significantly increased after NF-kappa B decoy transfection in the irradiated VSMCs (apoptosis fraction: 13.33+/-2.08% vs. 26.29+/-7.43%, for radiation only vs. radiation+NF-kappa B decoy transfection, P < 0.05). In addition, at 48 h, NF-kappa B decoy transfection dose dependently (10 mM vs. 20 mM) inhibited proliferation of 16Gy-irradiated VSMCs, and showed greater antiproliferative efficacy than 100 mM sulfasalazine, a specific NF-kappa B inhibitor. These results indicate that NF-kappa B inhibition reduces proliferation and survival of irradiated VSMCs, likely by increased apoptosis rather than additive cell cycle arrest and suggest the possibility of adjunctive gene therapy using NF-kappa B decoy to improve efficacy and to decrease the adverse effects of intracoronary radiation therapy.


Subject(s)
Animals , Male , Rats , Aorta/cytology , Apoptosis , Cell Cycle/physiology , Cell Proliferation/radiation effects , Cells, Cultured , Gamma Rays , Intercellular Adhesion Molecule-1/metabolism , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/cytology , NF-kappa B/antagonists & inhibitors , Nitric Oxide Synthase/metabolism , Protein Transport , Rats, Sprague-Dawley , Transcription, Genetic , Transfection , Tumor Necrosis Factor-alpha/metabolism
18.
Article in English | IMSEAR | ID: sea-16242

ABSTRACT

BACKGROUND & OBJECTIVES: The biochemical mechanisms underlying the development of sensitization-induced airway hyperresponsiveness (AHR) in asthma are poorly defined. Alterations in the regulation of intracellular calcium may play an important role in its pathogenesis. We carried out this study to see the effect of sensitization with ovalbumin on membrane ion fluxes and intracellular calcium in a guinea pig model. METHODS: Airway reactivity to inhaled histamine was measured initially and after sensitization with ovalbumin in 28 guineapigs. Intracellular calcium [Ca(2+)]i was measured in tracheal smooth muscle cells and peripheral leukocytes using fluorescent dye FURA 2AM. Calcium and sodium ion influx across the cell membrane was measured in leukocytes. Ouabain-sensitive Rubidium ((86)Rb) influx was measured in tracheal smooth muscles cells. The activities of Na(+), K(+) ATPase and Ca(2+) ATPase were measured in tracheal smooth muscle cells. Lipid peroxides were measured in plasma. RESULTS: Airway responsiveness was significantly (P<0.001) increased after sensitization along with an increase in [Ca2+]i levels in leukocytes and tracheal smooth muscle cells, higher rates of (45)Ca and (22)Na influx in leukocytes and higher (86)Rb influx rates in tracheal smooth muscle cells, and increased levels of lipid peroxides in plasma. INTERPRETATION & CONCLUSION: In guineapig model of asthma sensitization to allergen increased the membrane permeability to calcium and sodium, and intracellular calcium levels. These alterations may play a role in the pathogenesis of airway hyper-responsiveness following sensitization.


Subject(s)
Animals , Bronchial Hyperreactivity/metabolism , Calcium/chemistry , Cell Membrane/metabolism , Fluorescent Dyes/metabolism , Fura-2/analogs & derivatives , Guinea Pigs , Histamine/metabolism , Ions/metabolism , Leukocytes/cytology , Lipid Peroxidation , Male , Myocytes, Smooth Muscle/cytology , Ovalbumin/metabolism , Rubidium Radioisotopes/metabolism , Sodium Radioisotopes/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Trachea/cytology
19.
Journal of Korean Medical Science ; : 327-332, 2004.
Article in English | WPRIM | ID: wpr-204331

ABSTRACT

Intimal hyperplasia is defined as the abnormal migration and proliferation of vascular smooth muscle cells (VSMCs) with deposition of extracellular matrix. However, the cell cycle regulatory mechanisms of injury-induced VSMC proliferation are largely unknown. To examine the expression kinetics of cell cycle regulatory factors which is known to be worked positively or negatively, we used rat balloon injury model. Marked induction of proliferating cell nuclear antigen (PCNA), G1/S cyclin-dependent kinase (cdk2), and its regulatory subunit (cyclin E) occurred between 1 and 3 days after balloon arterial injury, and this was sustained for up to 7 days and then declined. However, the induction of the negative regulators, p21 and p27, occurred between 3 and 5 days of injury, peaked after 7 and 14 days and was then sustained. VSMC proliferation after balloon catheter injury of the rat iliac artery is associated with coordinated expression of positive (cdk2, cyclin E and PCNA) and negative (p21, p27) regulators. Cell cycle regulators such as cdk2, cyclin E, p21, p27 may be suitable targets for the control of intimal hyperplasia.


Subject(s)
Animals , Male , Rats , Arteries/pathology , /adverse effects , Blotting, Western , CDC2-CDC28 Kinases/biosynthesis , Cell Cycle , Cell Cycle Proteins/biosynthesis , Cell Division , Cyclin E/biosynthesis , Cyclins/biosynthesis , Endothelium, Vascular/pathology , Extracellular Matrix/metabolism , Hyperplasia/pathology , Iliac Artery/pathology , Immunohistochemistry , Myocytes, Smooth Muscle/cytology , Proliferating Cell Nuclear Antigen/biosynthesis , Rats, Sprague-Dawley , Time Factors , Tumor Suppressor Proteins/biosynthesis
20.
Experimental & Molecular Medicine ; : 451-461, 2002.
Article in English | WPRIM | ID: wpr-13043

ABSTRACT

Inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, known as statins, are widely used for primary and secondary prevention of coronary artery atherosclerosis. Pathogenesis of atherosclerosis is multistep processes where transendothelial migration of various leukocytes including monocytes is a crucial step. Interferon-gamma(IFN-gamma) contributes in this process by activating macrophages and T-lymphocytes, and by inducing adhesion molecules in vascular endothelial and smooth muscle cells. In this study we investigated the expression of intercellular cell adhesion molecule- 1 (ICAM-1) in transformed endothelial cell line ECV304 cells as influenced by lovastatin, tumor necrosis factor-alpha (TNF-alpha) and IFN-gamma. Results show that lovastatin suppresses expression of ICAM-1 by inhibiting the IFN-gamma-induced extracellular signal-regulated kinase (ERK) p44/p42-STAT1 signaling pathway. In cells treated with lovastatin and IFN-gamma.ICAM-1 was expressed at a lower level than in cells treated with IFN-gamma alone. However, lovastatin does not reduce TNF-alpha induced expression of ICAM-1. A similar result was observed in cells treated with the MEKK inhibitor PD98059 and IFN-gamma. Cis-acting DNA sequence elements were identified in the 5'-flanking region of the ICAM-1 promoter that mediate inhibition by lovastatin; these sequences map to the IFN-gamma activated site which also binds the STAT1 homodimer. However, lovastatin did not inhibit IFN-gamma-mediated induction of the Y701 phosphorylated form of STAT1. But lovastatin does inhibit the IFN-gamma-mediated phosphorylation of ERK1/ERK2 (T202/Y204) and S727 phosphorylation of STAT1. TNF-alpha does not induce phosphorylation of ERK1/ERK2 and S727 in ECV304 and smooth muscle cells. The results provide the evidences that statins may have beneficial effects by inhibiting IFN-gamma action in atherosclerotic process


Subject(s)
Animals , Rats , Cell Line , DNA-Binding Proteins/metabolism , Endothelium, Vascular/cytology , Gene Expression Regulation/drug effects , Intercellular Adhesion Molecule-1/genetics , Interferon-gamma/antagonists & inhibitors , Lovastatin/pharmacology , Mitogen-Activated Protein Kinases/metabolism , Myocytes, Smooth Muscle/cytology , Phosphorylation/drug effects , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , Recombinant Proteins , Trans-Activators/metabolism , Tumor Necrosis Factor-alpha/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL